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Abstract
Understanding what drives the interannual variability (IAV) of the land carbon sink is crucial for
improving future predictions of this important, yet uncertain, component of the climate system.
While drivers of global and hemispheric-scale net ecosystem exchange (NEE) IAV have been
investigated, our understanding of the drivers of NEE IAV at regional scales (e.g. sub-continental,
biome-level) is quite poor. Here we explore the biome-level attribution and drivers of North
American NEE using inverse estimates derived from a dense network of atmospheric CO2
observations. We find that deciduous broadleaf and mixed forests are the primary regions responsible
for North American NEE IAV, which differs from the ecoregions identified for the globe and
Northern Hemisphere. We also find that a suite of terrestrial biosphere models (TBMs) do not agree
on the dominant biome contributing to NEE IAV, with TBMs falling along an apparent spectrum
ranging between those with IAV dominated primarily by forested ecosystems to those with IAV
dominated by non-forested ecosystems. Furthermore, this regional trade-off in TBM NEE IAV is
found to be linked to differing regional responses to environmental drivers among TBMs. This work
displays the importance of extra-tropical forests in driving continental NEE IAV and also highlights
the challenges and limitations of using TBMs to inform regional-scale carbon flux dynamics.

Introduction

The terrestrial biosphere absorbs approximately a quar-
ter of anthropogenic carbon dioxide (CO2) emissions,
thereby acting as a natural buffer against rising atmo-
spheric CO2 levels and the resulting changes in climate
(IPCC 2013). This net sink of CO2 can vary consid-
erably from year to year, however, from over double
the long term global average to becoming a net source
of CO2 to the atmosphere (Le Quéré et al 2016).
Understanding the contemporary interannual variabil-
ity (IAV) in the land sink is a crucial step toward

better predicting the future buffering capabilities of
the terrestrial biosphere and the subsequent fate of
the climate system. The uncertainty in estimates of
the future land sink by state-of-the-science models
remains too large to discern whether, at a global scale,
lands will be a net source or sink of CO2 in the future
(Friedlingstein et al 2006, 2014). The uncertainty in
carbon flux dynamics at finer regional-to-continental
scales has been even harder to address (Schimel 2007).
Understanding regional-to-continental scale carbon
cycle-climate responses is arguably even more critical
as they offer relevant information for land management
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and climate-change mitigation decisions (Michalak
et al 2011) and are key for improving the representation
of climate controls in carbon cycle model development
(Schimel 2007).

North America plays an integral role in the global
carbon cycle, representing a quarter of the global land
sink (Le Quéré et al 2016). North America spans
primarily boreal and temperate zones and consists
of a variety of biomes, including evergreen needle-
leaf forests, deciduous broadleaf forests, mixed forests,
grasslands, croplands, and shrublands. At the plot level
(∼1 km2), flux tower studies have indicated that air
temperature, precipitation, solar radiation, and dis-
turbance (Baldocchi 2008, Baldocchi et al 2017) all
play major roles in controlling North American NEE
IAV. Site-level findings for North America indicate that
the dominant drivers of NEE IAV vary by biome type
(Baldocchi et al2017) and canbe rather complex (Desai
et al 2010) as they are not easily correlated with annual
climate anomalies but rather seasonal climate anoma-
lies (Fu et al 2017b) or transient favorable climate
conditions (Zscheischler et al 2016). At the continental
scale, studies have estimated the total carbon budget
and IAV of North American NEE (Hayes et al 2012,
King et al 2015) using TBMs and inverse models, yet
they have not examined sub-continental or regional
(down to ∼100 km2) NEE IAV nor have they explored
regional attribution and drivers of NEE IAV. While
TBMscanprovide estimatesof carbonfluxes at regional
scales and have been the primary tool for exploring
regional carbon flux IAV dynamics (Ahlström et al
2015, Jung et al 2017), TBMs have been shown to per-
form poorly in terms of predicting IAV at the plot
level ∼ 1 km2 (Keenan et al 2012, Raczka et al 2013).
Even at larger scales, the use of TBMs to examine IAV
could be problematic as a given TBM may be simulat-
ing historical IAV accurately for the ‘wrong reasons,’
i.e. with differing responses to environmental condi-
tions (Fang et al 2017, Huntzinger et al 2017). Hence,
a need exists to explore North American NEE IAV at
the intermediate or regional scale with a suitable large
scale observational constraint.

One reason for the gap in understanding IAV at
intermediate scales is the difficulty in estimating car-
bon fluxes at these scales. This gap in understanding
is not specific to North America, but rather emblem-
atic of regional scale IAV, which is generally poorly
understood (Niu et al 2017). Analyzing multiple flux
towers within a given biome has emerged as a key tool
for providing information on carbon flux dynamics
representative of a specific biome or ecosystem (e.g.
Baldocchi et al 2017). However, due to the limited
footprint (∼ 1 km2) of individual flux towers, inter-
polation and extrapolation is needed to examine the
integrated carbon flux response of a region or biome,
which can pose its own set of challenges (e.g. Hoffman
et al 2013, Kumar et al 2016). TBMs can provide esti-
mates of carbon fluxes at intermediate scales, although
these estimates are hard to validate due to the lack of an

observational constraint at compatible scales. Regional
inverse models leverage atmospheric CO2 observations
and an atmospheric transport model to investigate sur-
face fluxes at regional scales. Atmospheric data have
been used to infer regional carbon fluxes through
inverse modeling for a variety of studies (e.g. Gourdji
et al 2012, Lauvaux et al 2012, Miller et al 2013, Schuh
et al 2013, Alden et al 2016), yet these studies have typi-
cally focused on just one or two years. This limitation is
primarily related to the relatively recent development of
more dense atmospheric observation networks, which
previously were only supported via short-term mea-
surement campaigns (e.g. Miles et al 2013). In North
America, the number of continuous in-situ CO2 mea-
surement sites has expanded from nine sites in 2004 to
∼35 by 2007 (Shiga et al 2013, ObsPack 2016). Thus,
thedensemulti-year atmosphericCO2 monitoringnet-
work across North America offers an observational
constraint that enables the investigation of regional
carbon flux IAV.

The main aim of this study is to explore the regional
attribution and drivers of IAV in the annual North
American carbon sink from a top-down atmospheric-
data perspective. We estimate North American CO2
NEE for theperiod2007–2012usinganetworkof atmo-
spheric CO2 observations and a geostatistical inversion,
quantify NEE IAV at the continental and biome scales,
and identify the biome-level contributions to NEE IAV.
We compare results from the atmospheric inversion to
estimates from an ensemble of TBMs to explore and
highlight any difference between these two approaches.
Finally, we investigate possible reasons for the large
spread in TBM based IAV contributions.

Methods and data

To analyze flux estimates at the regional-scale, we
implement an atmospheric inverse approach specifi-
cally designed to account for the challenges of a regional
analysis. Peylin et al (2013) list several recommenda-
tions for exploring regional carbon flux dynamics. We
address three pertinent topics here: (1) the network of
observations must be sufficiently dense and constant,
(2) fluxes must be estimated at relatively high resolu-
tion, and (3) a realistic awareness of the impact of prior
fluxes must be taken into account. The set-up of the
regional inversion utilized in this study addresses each
of these goals.

Six years (2007–2012) of continuous atmospheric
CO2 concentration observations are used from a
network of towers across North America. CO2 concen-
trations are averaged over a three hour interval centered
on 3 pm and filtered in the same manner as Gourdji et
al (2012) and Fang and Michalak (2015) to account for
various data anomalies (e.g. outliers, transport model
issues, +/−30 ppm spikes from the background). CO2
concentration data are obtained from the ObsPack
GLOBALVIEWplus v2.1 product (Masarie et al 2014,
ObsPack 2016) with the addition of the site at Har-
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vard Forest, Massachusetts (HFM) (Urbanski et al
2007) and several sites that were part of the Mid-
Continent Intensive project (Miles et al 2012, 2013)
located in Austin Cary Memorial Forest, Gainesville,
Florida (AAC); Chestnut Ridge, Tennessee (ACR);
Canaan Valley, West Virginia (ACV); Mead, Nebraska
(AME); Missouri Ozark, Missouri (AOZ) (Stephens et
al 2011); Centerville, Iowa (RCE); Galesville, Wiscon-
sin (RGV); Kewanee, Illinois (RKW); Mead, Nebraska
(RMM);RoundLake,Minnesota (RRL) (Richardson et
al 2012); and Rosemount, Minnesota (KCMP) (Griffis
et al 2008). Over the six years, 21 sites (∼60% of the
data)havea6year record, sevensites (∼15%of thedata)
have a 5 year record, four sites (∼9% of the data) have
a 4 year record, nine sites (∼10% of the data) have a 3
year record, and 14 sites (∼6% of the data) have a 1 or 2
year record (for additional site information see table S1
available at stacks.iop.org/ERL/13/084015/mmedia).
While the network has fluctuated over time, a majority
of the sites and ∼75% of the data (Andrews et al 2014,
ObsPack 2016) span at least 5 years. Additionally, the
integrated sensitivity or footprint of the network covers
a relatively consistent area from year to year (figure S1)
and sensitivity tests (supplementary materials) showed
results were not impacted by the network composition.

We use the Stochastic Time Inverted Lagrangian
Transport model (STILT) (Lin et al 2003) driven by
winds from the Weather Research and Forecasting
model (WRF) (Skamarock and Klemp 2008, Nehrkorn
et al 2010) using an inner 10 km grid over the con-
tinental US (∼25◦–55◦N; 135◦–65◦W) and an outer
30 km grid surrounding the continent (∼10◦–80◦ N;
170◦–50◦ W) to derive the footprint or sensitivity
[ppm/(𝜇mol m−2 s−1)] of each observation to upwind
surfaces fluxes at a spatial resolution of 1◦ × 1◦

and a 3 hourly temporal resolution. These footprints
are derived from a footprint library available as a
part of the NOAA CarbonTracker Lagrange regional
inversion framework (www.esrl.noaa.gov/gmd/ccgg/
carbontracker-lagrange/).

NEE fluxes are estimated at a relatively high spatial
and temporal resolution (1◦ × 1◦ in space, 3 hourly in
time) for each individual year using the geostatistical
inverse modeling (GIM) formulation (Michalak et al
2004,Gourdji et al2012)and theWRF-STILTtransport
model. GIM incorporates covariates that are selected
based on their skill in explaining the atmospheric data
(Gourdji et al 2008, 2012, Fang and Michalak 2015),
eliminating the need for a traditional prior flux esti-
mate based on a TBM. The selection of covariates is
informed by a statistical model selection framework
(e.g. Gourdji et al 2012, Shiga et al 2014, Fang and
Michalak 2015) which has been adapted to derive a
consistent multi-year set of variables, namely solar-
induced fluorescence (SIF) (Joiner et al 2013), specific
humidity, and precipitation (Mesinger et al 2006) (for
more details for the specific inversion set-up see Shiga
et al 2018 and the supplementary materials). The GIM
approach thus removes the dependence of the prior

term on any given TBM and, when combined with the
dense atmospheric network over North America and
high resolution inverse framework, provides a unique
platform for investigating continental-scale IAV.

Carbon flux output from ten TBMs participating
in the Multi-scale Terrestrial Model Intercomparison
Project (MsTMIP) (Huntzinger et al 2013) are used to
compare with the inverse estimates of NEE. MsTMIP
uses a consistent set of environmental drivers (Wei
et al 2014a, 2014b) for all models as well as a uniform
protocol and experimental design so as to focus on
structural differences between models. The ten models
with output scaled to the monthly temporal and 1◦ ×
1◦ spatial scale used here mirror those used by Fang
et al (2017) and Zscheischler et al (2014), and include
Biome-BGC (Thornton et al 2002), CLM4 (Mao et al
2012, Oleson et al 2010), CLM4VIC (Li et al 2011),
DLEM (Tian et al 2011, 2012), GTEC (King et al 1997,
Ricciuto et al 2011), ISAM (Jain et al 1996, Barman
et al 2014), LPJ-wsl (Sitch et al 2003), ORCHIDEE-
LSCE (Krinner et al 2005), VEGAS (Zeng et al 2005),
and VISIT (Ito 2010).

The analysis uses the contribution framework
developed by Ahlström et al (2015) to explore the por-
tion of North American IAV attributable to a specific
region.

𝑐𝑗 =

∑
𝑡

𝑓ij|𝐹𝑡|
𝐹𝑡∑

𝑡 |𝐹𝑡|
(1)

where fij represents the flux anomaly in region j and
year t, and F𝑡 is the North American continental-scale
flux anomaly for year t. This formulation weighs a given
region’s flux anomaly by the similarity to the large-scale
North American flux anomaly, thus defining the con-
tribution, c𝑗 , of a given region j to North American
IAV. This framing enables the identification and com-
parison of the relative importance of a region in driving
continental-scale North American IAV.

We further calculate the biome-level response or
sensitivity of a given flux component annual anomalies
to seasonal temperature, precipitation, or radiation
anomalies. This is done by first calculating the seasonal
anomalies at each 1◦ × 1◦ grid cell for each driver
variable (e.g. temperature, precipitation) as well as the
annual flux anomaly. Next, for each biome (defined
using a modified IGBP landcover classification map
from Frankenberg et al (2011), figure 2(b)), the
slope of the linear regression line between the grid
cell flux anomalies and the corresponding grid cell
anomalies for the given environmental variable is
used to quantify the sensitivity. The temperature and
precipitation data used here are the same CRU-NCEP
data used to drive the MsTMIP simulations cover-
ing 1981–2010 (Wei et al 2014a, 2014b) extended
to 2012 (https://vesg.ipsl.upmc.fr/thredds/catalog/
work/p529viov/cruncep/V8_1901_2016/catalog.html)
(Le Quéré et al 2016), thus seasonal anomalies are
defined as deviations from the long-term seasonal
means.
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Results and discussion

We estimate North American NEE IAV, defined here
as the standard deviation of annual net flux estimates
(figure 1), to be 0.35 PgC yr−1, which is consistent
with the range of previous inverse estimates of North
American NEE IAV, 0.36 +/− 0.13 PgC yr−1 (King
et al 2015). The North American region used here
encompasses the five biomes shown in figure 2(b) (see
table S2 for IAV estimates for the combined Boreal
and Temperate North America TransCom3 regions
used by King et al (2015)). The continental level IAV
found here is comparable in magnitude to the total
annual North Americannet carbon sink for 1990–2009,
−0.47+/− 0.28 PgC yr−1 (King et al 2015), where here
and throughout the paper a negative flux represents
a net uptake of carbon. Additionally, the average IAV
from the 10 MsTMIP TBMs at the continental scale
∼0.20 PgC yr−1 (table S2) is approximately 60% of the
IAV estimated here using an atmospheric constraint,
which is also consistent with King et al (2015) who
found that TBMs exhibited less IAV than atmospheric
observation-based estimates.

The biome-level estimates of IAV derived from
atmospheric observations are 1.6–4.4 times larger than
the average of TBM-based estimates (figure 1, table S2).
Previous studies have suggested that TBMs underesti-
mate IAV at the site level (Keenan et al 2012, Raczka
et al 2013) and at the continental level (King et al
2015) due to missing or poorly represented processes
in TBMs. Here we show that, at the biome level, TBMs
on average underestimate IAV in Deciduous broadleaf
& mixed forests and Shrublands, by factors of 3.1
and 4.4, respectively. In these two biomes, the largest
IAV predicted by a TBM is less than 60% of the cor-
responding atmospheric observation-based estimate
of IAV.

We identify Deciduous broadleaf & mixed forests
as the largest overall contributors (∼40%) to North
American NEE IAV (figure 2), the largest contributor
per unit area, and the biome with the largest NEE IAV
magnitude. This is in contrast to the global scale, where
Ahlström et al (2015) found that semi-arid ecosystems
are the dominant contributor to IAV (39%), according
to an ensemble of TBM simulations from the TRENDY
model intercomparison project (Sitch et al 2015). Sim-
ilarly, for the northern hemisphere, Fu et al (2017a)
found semi-arid ecosystems (39%) and Grasslands and
Croplands (39%) to be the dominant contributors to
IAV, based on the Monitoring Atmospheric Com-
position and Climate (MACC-II) inversion system
(www.ecmwf.int/en/research/projects/macc-ii). While
Deciduous broadleaf forests have been identified at
the site level as an ecosystem with relatively large
IAV when compared to other North American biomes
(Yuan et al 2009, Baldocchi et al 2017), our results
demonstrate that at the North American continental
scale these ecosystems are dominating IAV. Addi-

tionally, we find that TBMs appear to consistently
underestimate the contribution of IAV from Decidu-
ous broadleaf & mixed forests, which may be linked
to the documented underestimation of IAV across
forested sites by TBMs (Keenan et al 2012, Raczka et al
2013).

The Shrublands biome, while having the second
largest overall IAV magnitude (Table S2) shows the
lowest relative contribution to North American IAV
(figure 2). This is due to the metric defined by Ahlström
et al (2015), equation (1), which quantifies the con-
tribution based both on the magnitude of and the
‘synchronicity’ between regional anomalies and the
‘global’ anomaly (in this case continental anomaly). Put
another way, although Shrublands exhibit high IAV,
there is a difference in phasing between Shrublands
and the rest of continental North American IAV. Likely
Shrublands, which represent 60% of the North Ameri-
can semi-arid ecosystems by area, are more responsive
to global drivers of semi-arid ecosystems (e.g. drought
(Huang et al 2016)) rather than drivers of the forested
biomes that make up a large portion of continental
North America. Therefore, these findings may indeed
be consistent with previous findings recognizing the
role of semi-arid regions on global IAV (Poulter et al
2014, Ahlström et al 2015). Interestingly, the MsTMIP
TBMs also show a low contribution of the Shrublands
biome to North American IAV, however the low IAV
contribution in TBMs is largely due to a smaller mag-
nitude of Shrublands IAV, rather than the phasing
difference.

We find the spread across IAV contributions from
the various TBMs in the MsTMIP ensemble to be
quite large (figure 2). Consequently, no dominant
biome can be clearly identified for the MsTMIP TBMs.
The large spread in biome-level IAV contributions in
TBMs can in part be linked to an apparent trade-off
between forested (Needleleaf and Deciduous broadleaf
& mixed forests) vs. non-forested (Grasslands and
Shrublands) biomes (figure 3). For the following anal-
ysis, we group the biomes into these two broader
categories. This is done based on the notion that the
response of TBMs to the climatic controls related
to drought stress (e.g. temperature, water availabil-
ity) in these two broad categories (e.g. Li et al 2017)
may be linked to IAV dynamics. Drought plays a key
role in the IAV of Shrublands and Grasslands (i.e.
semi-arid ecosystems) (Poulter et al 2014, Huang et
al 2016, Ma et al 2016) as well as temperate and
boreal ecosystems (Wilson and Baldocchi 2001, Ciais
et al 2005, Kljun et al 2007). We exclude Crop-
lands in the subsequent analysis because Croplands
are highly-managed and these management practices
are likely not represented in TBMs (Lokupitiya et al
2016).

TBM responses to anomalies in summertime tem-
perature and precipitation help to explain the IAV
trade-off between forested and non-forested regions
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Figure 2. Deciduous & mixed forests are the dominant contributor to North American NEE IAV based on atmospheric observations
(diamonds), both in terms of the percent contribution (40%) and relative to the biome’s area (circles). TBMs (box-plots) show
croplands (30%) as the largest contributor, although the spread among TBMs is too large to identify a dominant biome. For TBMs,
boxes show interquartile range and median of the ten TBMs, whiskers represent TBMs within 1.5 times the interquartile range of either
box edge, and plus signs represent outliers. For the atmospheric inversion results, the diamond represents the contribution estimate
over the full time domain while the solid bar represents the range based on leave-one-year-out bootstrap estimates. The corresponding
biome map is show in panel (b).

(figure 3) (similar responses observed for radiation,
figure S2 and S3). TBMs with stronger NEE sensitivi-
ties to temperature andprecipitation in forested biomes
(relative to their sensitivities in non-forested biomes)
predict that forested regions dominate North Ameri-
can NEE IAV, while TBMs with stronger sensitivities
in non-forested biomes have higher NEE IAV con-
tributions from non-forested biomes (figure 3). This
result shows that, for some TBMs, there are clear differ-

ences between how forested and non-forested biomes
respond to environmental driver anomalies (figure 4),
but that there is little agreement aboutwhich regions are
more or less sensitive to temperature and precipitation
anomalies. Hence, the environmental driver sensitivity
differences appear to impact the biome-level attribu-
tion of NEE IAV in a given TBM, implying a potential
indirect tuning effect where a TBM either has a strong
NEE sensitivity in forested biomes or a strong NEE
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TBMs tend to have strong sensitivities to temperature and precipitation in Needleleaf and Deciduous & mixed forests (darker purple)
or strong sensitivities in Shrublands and Grasslands (darker orange), but not both, thus driving the relative IAV contributions of one
or the other region. TBMs are shown as circles and the atmospheric-observation-constrained estimate is shown as a diamond. The top
(bottom) color represents the difference in temperature (precipitation) sensitivity between Needleleaf and Deciduous & mixed forests
vs. Shrublands and Grasslands. Sensitivity differences are calculated as Needleleaf and Deciduous & mixed forests sensitivity minus
Shrublands and Grasslands sensitivity.

sensitivity in non-forested biomes but not both. Indi-
rect tuning effects have been observed previously at the
global scale, for example in TBMs’ climate vs. CO2 sen-
sitivity (Huntzinger et al 2017), but are seen here at the
biome level.

The atmospheric observation-based results show
a large portion of IAV in forested biomes (figure 3,
diamond position) but a stronger relative sensitivity of
NEE to summer temperature and precipitation anoma-
lies in Shrublands and Grasslands (as compared to
Needleleaf and Deciduous broadleaf & mixed forests)
(figure 3, diamond color). The sign of the relation-
ship between NEE anomalies and environmental driver
anomalies in Shrublands and Grasslands (figures 4(b)
and (d)) for TBMs and atmospheric observation-based
estimates aligns with site-level findings, which show
positive precipitation anomalies lead to more carbon
uptake while positive temperature anomalies lead to
less carbon uptake (e.g. Scott et al 2015, Baldocchi et
al 2017, Fu et al 2017b). The low sensitivity of atmo-
spheric observation-based NEE estimates in Needleleaf
and Deciduous broadleaf & mixed forests to sum-
mertime temperature (figure 4(a), dark grey dashed
line) and the small positive sensitivity to precipitation
anomalies (figure4(c), dark greydashed line) also aligns
with site level findings (e.g. Fu et al 2017b) showing
a smaller and opposite relationship between summer-
time precipitation and NEE, compared to non-forested

sites, andanoverallweaker relationship to summertime
environmental conditions. This result also reinforces
the notion that the relationship between summertime
environmental drivers and NEE anomalies in forested
ecosystems is not as clear as those in grassland or shrub-
land ecosystems (Zscheischler et al2016, Fu et al2017b,
Baldocchi et al 2017). While atmospheric-observation
based NEE sensitivities seem to fall in the middle of the
range of TBM sensitivities in grassland and shrubland
ecosystems (figures 4(b) and (d)), for forested ecosys-
tems the atmospheric-observation based sensitivities of
NEE anomalies appear to be a lower end-member rel-
ative to most of the TBMs (figures 4(a) and (c)). One
explanation for this is that TBMs may be overly sen-
sitive to summertime environmental driver anomalies
in forests. Annual NEE anomalies in forested ecosys-
tems are oftenmore complex than a simple relationship
with growing season environmental conditions and can
involve a variety of multifaceted responses (e.g. coun-
teracting seasonal anomalies (e.g. Wolf et al 2016),
accumulation of favorable conditions (e.g. Zscheis-
chler et al 2016), lagged drought effects (e.g. Anderegg
et al 2015), growing season length, disturbance, soil
conditions (e.g. (Baldocchi et al 2017)).

As NEE is ultimately the result of two opposing
processes, gross primary production (GPP) and ecosys-
tem respiration (RE), we further probed the TBMs to
investigate which component drives the trade-off in
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Figure 4. TBMs with larger NEE sensitivity to summertime (June, July, August) environmental drivers in Needleleaf and Deciduous &
mixed forests (a) and (c) show smaller sensitivity in Grasslands and Shrublands regions (b) and (d), and vice versa. Sensitivity of annual
NEE anomalies to summer temperature (a) and (b) andprecipitation (c) and (d) anomalies in Needleleaf andDeciduous& mixed forests
(a) and (c) and Grasslands and Shrublands regions (b) and (d) for the suite of ten TBMs (colored lines) and atmospheric observation-
based estimate (GIM—dark grey dashed line). Grey histogram shows the distribution of summer environmental anomalies. TBMs
ordered based on the difference in IAV contribution between Grasslands and Shrublands regions and Needleleaf and Deciduous &
mixed forests from figure 3.

relative IAV contributions between the forested and
non-forested regions. The correspondence of GPP sen-
sitivity differences with regional NEE IAV contribution
differences (figures S3(d)– (f)) is in contrast to the lack
of a clear relationship in the corresponding RE sensi-
tivity difference (figure S3(g)–(i)). Thus, we conclude
that the regional IAV trade-off is primarily explained by
GPP, rather than RE sensitivity differences. This may
be somewhat expected as summertime NEE dynam-
ics in the biomes examined are largely driven by GPP,
however it suggests that at the component level TBM
formulation/parameterization appears to be linked to
regional IAV dynamics.

Conclusions

Overall, this work explores North American NEE IAV
dynamics at scales that bridge the gap between the
site-level and global-level using a dense network of
atmospheric CO2 measurements, which provides a
top-down regionally sensitive observational constraint.
These findings address one of the fundamental ques-
tions regarding the terrestrial carbon cycle, namely
quantifying the variability of carbon fluxes from
year to year. The regional atmospheric observation-
constrained estimates show that North America has
larger variability in NEE than TBMs predict, at both the
biome and continental level. We also identify Decidu-

ous broadleaf & mixed forests as the main sources of
North AmericanNEE IAV, which differs from the main
global and northernhemisphere drivers. These findings
underscore the importance of North American extra-
tropical forests in regulating continental carbon flux
variability, and stress the critical need to improve our
understanding of the processes driving regional NEE
IAV.

Across North America, we find that current state-
of-the-art TBMs disagree about the main regions
responsible for NEE IAV, as well as about the NEE,
GPP, and RE responses to climate drivers. In TBMs,
a trade-off between whether forested or non-forested
regions dominate continental IAV is found to be linked
to a given TBM’s sensitivity to environmental drivers.
TBMs with a stronger sensitivity of NEE to environ-
mental drivers in forested (relative to non-forested)
regions have a larger contribution of NEE IAV from
forested regions and vice versa. The regional differences
in NEE responses to environmental drivers in TBMs
has important implications for future predictions of the
regional and biome-level behavior of the terrestrial bio-
sphere as temperature and precipitation regimes shift
and as extreme events become more likely (Seneviratne
et al 2012, Reichstein et al 2013). The ensemble of
TBMs examined here, for example, would likely yield
divergent predictions about the fate of the carbon sink
in forested vs. non-forested regions of North America
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under changing temperature and precipitation condi-
tions. Hence, more research is needed to understand
andobservationally constrain the carboncycle response
to climatic conditions at the regional scale.
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